Back to Statistical Inference

stars

4,300 ratings

•

869 reviews

Statistical inference is the process of drawing conclusions about populations or scientific truths from data. There are many modes of performing inference including statistical modeling, data oriented strategies and explicit use of designs and randomization in analyses. Furthermore, there are broad theories (frequentists, Bayesian, likelihood, design based, …) and numerous complexities (missing data, observed and unobserved confounding, biases) for performing inference. A practitioner can often be left in a debilitating maze of techniques, philosophies and nuance. This course presents the fundamentals of inference in a practical approach for getting things done. After taking this course, students will understand the broad directions of statistical inference and use this information for making informed choices in analyzing data....

JA

Oct 25, 2018

Course is compressed with lots of statistical concepts. Which is very good as most must know concepts are imparted. Lots of extra reading is required to gain all insights. Very good motivating start .

MI

Sep 24, 2020

the teachers were awesome in this course. I liked this course a lot.Understood it properly.Thanks to all the beloved teachers and mentors who toiled hard to make these course easy to handle.Gracious!

Filter by:

By Koen V

•Aug 11, 2019

Hard subject, hard explanations

By Charbel L

•Mar 7, 2019

Difficulty level is high...

By KUNAL J

•May 2, 2020

Its good but not too good.

By Wassim K

•Jun 5, 2017

Too mathematical for me

By Biju B

•Jun 5, 2017

The lectures were Dry

By dipankar b

•Sep 4, 2017

Good, Productive

By David K

•Aug 16, 2017

a bit cursory

By Luv K

•Aug 23, 2020

Too complex

By Roberto L

•Nov 11, 2018

Too sparse.

By Ankush K

•Jul 6, 2017

Very basic.

By Santiago P G

•Aug 1, 2017

A hard one

By Suzhongdayi

•Jul 11, 2016

no passion

By Hani M

•Nov 1, 2016

A lot of the concepts in Stats Inf - although simple when you think about it and used pretty much every day - I felt were difficult to understand at first. Wikipedia and some other online sources, and youtube videos, were more helpful but I think the real issue lay in the teaching style. I won't knock Mr. Caffo like some of the others here have because at the end of the day everyone learns differently. What works for some might not work for others and unfortunately his style did not suit my learning requirements.

My rating is purely based on the content which I think can be simplified by giving more visual examples. I am rating this after taking the 'Regression Models' course and in that course it is MUCH easier because he gives "real time" and visual examples of what, eg Residuals, mean or represent. Just that alone made a huge difference and it then helps me focus on how to write the R code rather than trying to understand the math. Hope this helps!

By Eduard R

•May 26, 2020

Connection between the slides, transcript, R code, and pdf presentation slides and the text book is great! Easy to follow along. Concepts are explained poorly. Often definitions are missing and the student has to guess what is meant by a variable on the slides. Very superficial learning. Not nearly compareable to real university course. I think the students would benefit from more project work assignments and peer reviews. This is when you really learn something - when you have to do it yourself. Quizes are a good start. I did the course as a refresh and I can't imagine correctly understanding the concepts just by having completed this course.

By Ricardo M

•Dec 29, 2017

The course delves into some relevant topics however it doesn't feel as properly structured. While on the first week the lectures seem to try to give a basic and comprehensible learning of probabilities, once we start into the topics of pure statistics, it's just gets a mess.

Lots of formulas and concepts thrown at you without much clarification. For someone without any knowledge/background on statistics this can be quite difficult to grasp the concepts.

The course should be reviewed or at least the indication of "eginner Specialization.No prior experience required." should be updated to mention that some knowledge in statistics is recommended .

By Thomas G

•Apr 5, 2017

This course seems weirdly balanced between assuming one knows very little about statistics while also assuming one is intimately familiar with statistics notation and terminology. It would probably be better if the data science track had an optional "intro to statistics" class that can take more time to let students familiarize themselves with the terminology, and then a separate "ins and outs of probability testing in R" for those already familiar. This course seems to try and bite off more than it can chew by attempting to be both at the same time.

Still, the lectures are interesting and the material is important to learn / cover.

By Qasim Z

•Oct 26, 2016

This course means well but the lectures in the first half of the course are not good. The instructor seems to take a midway between rigorous mathematics, using terms like robust etc while at the same time also trying to keep it easily accessible. RD Peng's courses take a much better approach in that they keep things at one end of the spectrum (simple language). Having a background in theoretical physics and computer science, this duality in this course is very confusing for me. Also, I do not need to see a tiny, grainy video inset of the instructor during the lecture videos.

By Krishna U

•Jul 29, 2019

Terribly confusing, and concepts were made so much more complicated than needed (lectures, instructions, quizzes).

Most other sources (Khan Academy, Stattrek, Stats textbooks etc) were used and preferred to complete course, to completion of the Data Sciences specialization. Or just have a full understanding in Statistics prior to this course.

Additionally, there's little discussion or help; wish this course could've been updated with revisions or clarified over the years.

By graham s

•May 21, 2016

completely missed the explanation part of the teaching. Why use n-1 for standard deviation? "Because of degrees of freedom" Only mention, no further explanation. Just no explanations of anything in this course. I looked at the biostats course by the same guy. Same story. Teaching is more than just saying the facts, you have to explain things, lead the understanding. The materials are just not there, not in the book either.

By Christine L

•Nov 5, 2016

If I wasn't already familiar with statistics, I would find the lectures and course book difficult to follow. If future revisions to the course are made, consider including a cheat sheet with the notation, parameter abbreviations used, etc. It would also be helpful to rewrite (or at least include a reference back to) the equation being used in the example calculations instead of immediately filling numbers in.

By Charles K

•Sep 18, 2016

The instructors approach in this course is very cursory. He tries to split the difference in going through the mechanics/mathematical theory and practical applications. As a result, he fails at both. I think it would be better to leave the mathematics and application learning to supporting materials and focus on explaining the theory and concepts of statistical inference in the lectures.

By Thej K

•Apr 14, 2019

The hardest course I have ever taken! Very hard to follow! Spent a lot of time, trying to understnad the lectures! The final assignment was really good, it really tied everything together! But the lectures and following them was a nightmare and hard to understand! I spent 55 hrs on this particular course! and the last week 4 I spent 20 hrs on this course

By Rajit A

•Apr 2, 2019

The course is very technical and needs a) reading and practice outside of the material presented here and, b) needs you to invest a lot more time than you might believe before you start this course. So if you are looking to just understand the basics of statistical inference or if you don't have a background in statistics then this is best avoided.

By Jake T T

•Apr 8, 2018

This was a difficult course to get through. The lectures were almost completely useless - I had to look up videos from youtube and other sources for every single lecture to learn the concept, and then rewatch the lecture - even then the instructor was difficult to follow. If this wasn't part of the specialization I would have dropped the course.

By Eugene K

•Mar 8, 2018

Good material but the lectures are not well put together for the novice. I think the professor needs to have a little more empathy for the students and not just read notes for the class. Too many sentences with esoteric terms are spewed out without truly trying to explain the material in a way that the student will understand.

- Google Data Analyst
- Google Project Management
- Google UX Design
- Google IT Support
- IBM Data Science
- IBM Data Analyst
- IBM Data Analytics with Excel and R
- IBM Cybersecurity Analyst
- IBM Data Engineering
- IBM Full Stack Cloud Developer
- Facebook Social Media Marketing
- Facebook Marketing Analytics
- Salesforce Sales Development Representative
- Salesforce Sales Operations
- Intuit Bookkeeping
- Preparing for Google Cloud Certification: Cloud Architect
- Preparing for Google Cloud Certification: Cloud Data Engineer
- Launch your career
- Prepare for a certification
- Advance your career

- Skills for Data Science Teams
- Data Driven Decision Making
- Software Engineering Skills
- Soft Skills for Engineering Teams
- Management Skills
- Marketing Skills
- Skills for Sales Teams
- Product Manager Skills
- Skills for Finance
- Popular Data Science Courses in the UK
- Beliebte Technologiekurse in Deutschland
- Popular Cybersecurity Certifications
- Popular IT Certifications
- Popular SQL Certifications
- Marketing Manager Career Guide
- Project Manager Career Guide
- Python Programming Skills
- Web Developer Career Guide
- Data Analyst Skills
- Skills for UX Designers

- MasterTrack® Certificates
- Professional Certificates
- University Certificates
- MBA & Business Degrees
- Data Science Degrees
- Computer Science Degrees
- Data Analytics Degrees
- Public Health Degrees
- Social Sciences Degrees
- Management Degrees
- Degrees from Top European Universities
- Master's Degrees
- Bachelor's Degrees
- Degrees with a Performance Pathway
- Bsc Courses
- What is a Bachelor's Degree?
- How Long Does a Master's Degree Take?
- Is an Online MBA Worth It?
- 7 Ways to Pay for Graduate School
- See all certificates